
fastats Documentation
Release a1

Dave Willmer

Dec 30, 2022

Contents:

1 Single Page Docs 1
1.1 Introduction . 1
1.2 Core Functionality . 3
1.3 fastats.linear_algebra . 7
1.4 fastats.maths . 7
1.5 fastats.optimise . 7
1.6 Technical Details . 7

2 Indices and tables 9

i

ii

CHAPTER 1

Single Page Docs

Everything you need on one page :)

1.1 Introduction

Fastats is a numerical library for python designed to give the highest level of performance in terms of both development
time and execution time.

It does this by providing a high-level, easy-to-use python API which is specifically designed to be JIT-compiled using
the excellent numba library to run at native speed.

Here’s a quick example to show some basic concepts:

import numpy as np

from fastats import single_pass

data = np.random.random((1000000,))

def square_minus_one(x):
return x * x - 1.0

result = single_pass(data, value=square_minus_one)

fastats.core.single_pass() is a core fastats function which takes a numpy array and a function, and applies
the function to each row of the numpy array. The function must be passed as the keyword argument value.

The value function can be any user-defined or library python function which is able to be JIT-compiled in nopython
mode by numba.

Note: Technical note: Internally, fastats takes the value function and replaces all occurrences of that function
recursively using the AST, then JIT-compiles the resulting function using numba so that everything runs at native

1

http://numba.pydata.org/
http://numba.pydata.org/
http://numba.pydata.org/

fastats Documentation, Release a1

speed. This ability to pass a function as an argument to a numba function is one of the key tenets of the fastats library.
This is achieved using the @fs decorator from the fastats library, which will be described later.

This is conceptually similar to the pandas.apply or numpy ufunc system for vectorizing calculations across
arrays - the benefits of fastats are (1) performance and (2) no required knowledge of decorators, C/Cython or ufuncs.

Fastats provides:

• A mechanism for passing arbitrary functions to numba functions, and having them JIT correctly.

• An AST transform which can cleanly replace functions within a nested python hierarchy.

• A core library of iteration functions to allow users to avoid explicit indexing in most cases. This is not only safer
but also usually faster to develop and faster to execute.

• A core library of high-performance linear algebra functions which are generally much faster than existing im-
plementations.

The AST transform in combination with the linear algebra routines allow us to perform many standard data sci-
ence/time series analysis tasks much faster than with existing packages. The idea of using numba as a JIT compiler is
not just for immediate performance benefits, but also so that these routines are always compiled for the hardware they
are running on - this is one of the main reasons that fastats can be faster than existing pre-compiled libraries.

With fastats, functions can be wrapped with the @fs decorator which transforms the function to allow any keyword
arguments to be passed; these keyword arguments specify the functions to be replaced within the original code.

When you specify a keyword argument, the code is transformed into AST form, and is then re-built with the specified
functions replaced. This leads to extremely fast execution times (due to numba), and extremely fast development times
(due to AST replacement of functions).

1.1.1 Performance Comparison

Here we use the data from the introductory code block above - a numpy array of 1 million float64’s. The test machine
is a 2015 Macbook Pro, Intel Core i7, 16GB RAM:

2 Chapter 1. Single Page Docs

http://numba.pydata.org/
http://numba.pydata.org/
http://numba.pydata.org/
http://numba.pydata.org/

fastats Documentation, Release a1

System Code Result
Pandas .apply

import pandas as pd
s = pd.Series(data)
%timeit
s.apply(square_minus_one)

391 ms ± 11.9 ms per loop

Numpy funcs

import numpy as np
%timeit np.power(data, 2) - 1

30.8 ms ± 944 µs per loop

Pandas binops

import pandas as pd
s = pd.Series(data)
%timeit (s * s) - 1

4.3 ms ± 93.8 µs per loop

Numpy binops

import numpy as np
%timeit (data ** 2) - 1

1.65 ms ± 19.7 µs per loop

Numba direct

from numba import jit
jit_wrap = jit(

nopython=True,
parallel=True

)(square_minus_one)
%timeit jit_wrap(data)

1.6 ms ± 22.2 µs per loop

Fastats

from fastats import single_pass
my_func = single_pass(

data,
value=square_minus_one,
return_callable=True)

%timeit my_func(data)

1.48 ms ± 22.4 µs per loop

As you can see, without resorting to C/Cython or other native code, fastats allows you to apply arbitrary Python
functions at native speeds.

1.2 Core Functionality

This section details the main functionality available in the fastats library.

1.2. Core Functionality 3

fastats Documentation, Release a1

1.2.1 single_pass

We have already used the single_pass function in the introductory example above. In a simplistic sense, this is
equivalent to the following Python code:

def single_pass(x, value=None):
result = np.zeros_like(x)
for row in x:

result[i] = value(row)
return result

As you can see, it allocates a new array the same size and type of the input array, then iterates over the input array
row-by-row, and assigns the return value to the corresponding row in the newly allocated output array.

Note: The actual implementation is slightly more nuanced than this because it will recursively replace all calls to the
value function (or any other keywords specified) throughout the entire subtree.

Note: This single_pass implementation is slightly naive in that it doesn’t currently account for multiple input
parameters to the value function. This is something we are actively working on.

To use single_pass you always pass it a numpy array and at least one keyword argument value= with the function
you would like to apply:

def my_calc(x):
return x**3 - x - 1

result = single_pass(data, value=my_calc)

In the my_calc example above, the function object is shown passed as the value= keyword argument. This function
will be replaced within the existing single_pass definition and automatically JIT-compiled using numba. The
resulting iteration will then occur at native speeds, not bottlenecked by python bytecode interpretation.

Note: The fastats ethos of allowing extremely fast development as well as execution time implies that we need
to help stop developers/data scientists writing their own iteration code. It’s far safer to use a pre-built and well-tested
function for iteration, especially where explicit indexing is used. single_pass facilitates this as it requires no
knowledge of any indexing issues, and is also faster than most/all other methods - it is therefore the recommended way
to apply any operation to an array.

1.2.2 windowed_pass

Another common operation is to apply a function as a rolling window along a data set; for this we have
windowed_pass. Here’s a slightly contrived example showing how to calculate the rolling mean across an array:

from fastats import windowed_pass

def mean(x):
return np.sum(x) / x.size

result = windowed_pass(x, 10, value=mean)

4 Chapter 1. Single Page Docs

http://numba.pydata.org/

fastats Documentation, Release a1

In the code above, the obvious difference between single_pass and windowed_pass is that the windowed
version takes a second positional argument to specify the size of the window. A window of that size is then fed into
the value= function, so the function also needs to accept an array, not a scalar value.

To change the window from 10 items to 25 items, we would therefore change line 6 above to:

result = windowed_pass(x, 25, value=mean)

For a more real-world example, let’s take a look at a rolling least-squares regression (OLS) across an array. The
OLS code will be discussed in the linear_algebra section later, but for now let’s look at how to perform a
high-performance rolling OLS over a numpy array with 2 columns:

from fastats import windowed_pass
from fastats.linear_algebra import ols

def ols_wrap(x):
return ols(x[:,:1], x[:,1:])[0][0]

result = windowed_pass(x, 10, value=ols_wrap)

The ols_wrap function is due to a current limitation of fastats - you cannot currently pass a function requiring
more than one argument to windowed_pass; the workaround is to write a one-line wrap function which passes
each column of the data set correctly to the underlying function, as shown above. This limitation will be removed in a
future version.

Note: Similar to the single_pass function, this windowed_pass example will take the high-performance ols
implementation from the fastats standard library, and JIT compile both the OLS and the loop which performs the
iteration. In this way the user gets high performance without needing to know the underlying details of performance
coding.

This is a quick way to get a rolling OLS function, however usually we are not interested in the slope values - most
people will be more interested in the r^2 and t-statistic values. To do this we will need to return multiple
values from the wrap function:

from fastats import windowed_pass
from fastats.linear_algebra import ols, r_squared

def ols_r_squared(x):
out = np.zeros(2)
a = x[:, :1]
b = x[:, 1:]
slope = ols(a, b)[0][0]
r2 = r_squared(a, b)[0][0]
out[0] = slope
out[1] = r2
return out

result = windowed_pass(data, 10, value=ols_r_squared)

Note: This wrap function for multiple return values is a bit fiddly to set up, but we are actively working on making
this easier.

This works because the return value from the windowed_pass function is always the same shape as the input data.
As a result with the raw input data in two columns, we can support two return values from the inner jitted function.
This is however quite restrictive, and we will improve this in a future release.

1.2. Core Functionality 5

fastats Documentation, Release a1

To call a numpy function as a rolling window, you currently need to wrap the numpy call in another function:

from fastats import windowed_pass

def nanmean(x):
return np.nanmean(x)

result = windowed_pass(x, 10, value=nanmean)

We will work to remove this restriction in a future release.

1.2.3 windowed_stateful_pass

1.2.4 Early JIT compilation without execution - return_callable

Most users will find it useful to store the jitted function, rather than re-jitting the code every time it is called. To do
this, pass the keyword argument return_callable=True to any core function (a core function is one with an
@fs decorator) and it will return the function instead of executing it.

For example:

rolling_ols = windowed_pass(x, 10, value=ols_wrap, return_callable=True)

After this, you can call the rolling_ols function without incurring another AST transform and JIT compilation
cycle. The result is just a normal Python function, so you call it with its expected arguments:

result = rolling_ols(x, 10)
large_window_result = rolling_ols(x, 250)

1.2.5 The @fs decorator

The ability to pass functions as arguments to numba functions and have everything jitted correctly comes from the
@fs decorator. When this decorator is applied to a function, it changes the semantics of keyword arguments; keyword
arguments indicate that any function calls of that argument name should be replaced with the function being passed
in. For example:

def mean(x):
return np.sum(x) / x.size

result = single_pass(x, value=mean)

The definition of single_pass does not take any keyword arguments, or specify **kwargs, but it has an @fs
decorator and therefore substitutes all occurences of value for mean in its own function body, and in the function
bodies of any of its child functions.

6 Chapter 1. Single Page Docs

fastats Documentation, Release a1

1.3 fastats.linear_algebra

1.4 fastats.maths

1.5 fastats.optimise

1.6 Technical Details

1.6.1 How do the AST Transforms work?

Imagine a nested function such as a very simple Newton-Raphson solver:

def newton_raphson(x0, delta, root=fs_func, deriv=deriv):
last_x = x0
next_x = last_x + 10 * delta
while abs(last_x - next_x) > delta:

new_y = root(next_x)
last_x = next_x
next_x = last_x - new_y / deriv(last_x, delta)

return next_x

In the code above we actually want to replace the root function with one of our own choosing, without having to
re-write the entire newton_raphson wrapper function.

In fastats this is performed by changing the semantics of positional and keyword arguments; numba does not
allow us to pass functions as arguments, but even if it did, we still need the ability to arbitrarily modify deeply nested
functions (use cases discussed below), rather than just the calls in the top-level function.

The Newton-Raphson code shown above is in the fastats standard library, and allows us to do the following:

from fastats.optimise.root_finding.newton_raphson import newton_raphson

def my_func(x):
return x ** 3 - x - 1

result = newton_raphson(0.5, 0.001, root=my_func)
assert 1.324 < result < 1.325

my_func is the function for which we would like to find the roots. It takes one argument x, which will be varied to
find the root.

When newton_raphson is called, it takes the root=my_func kwarg, and inspects the signature of my_func. It finds
that my_func takes 1 argument and expects the first argument (x in this case) to be the parameter that is modified by
the algorithm to find the root.

This is what fastats performs: at any level in the AST, fastats will modify the function signatures and ensure
that the correct arguments are passed to all functions, in order to allow any function to be modified by passing it as a
keyword argument at the top-level.

fastats does not currently support multiple arguments to solver functions, but we will support this in a future
release.

In this example, deriv will numerically calculate the derivative at each point, which is the reason for requiring nested
function substitution from the AST transform. It is also possible to use the same deriv function for a wide range of
root functions, as the numerical derivative just calls the root function with the x-values bumped in either direction.

1.3. fastats.linear_algebra 7

fastats Documentation, Release a1

As a result, we need the root= keyword argument to replace all values in the child functions (including deriv),
not just the one at the top-level. This allows us to have a very efficient and easy-to-learn API without sacrificing
performance.

However, in this case we can trivially calculate the analytical derivative by hand, and replace the deriv function like
this:

def my_deriv(x, y):
return 2 * x ** 2 - 1

result = newton_raphson(0.5, 0.001, root=my_func, deriv=my_deriv)

Which allows us to optionally pass an optimised function to calculate the derivative, but fall back on an unoptimised
version for fast experimenting/research.

This is not-limited to specific functions - if you are happy with lower-precision in certain calculations, you can pass
faster (lower-precision) versions of any mathematical functions, and fastatswill replace them throughout the entire
AST before passing the code onto numba, without requiring you to modify any code.

As an example, some calculations require the complementary error function erfc to be calculated. The accuracy
(precision) of erfc depends partially on how many terms are in the expansion. By reducing the number of terms we
can speed up calculations at the expense of accuracy.

If you are happy with 8 decimal places, and you had a a custom function erfc8 to calculate this in an optimal manner,
you could speed up calculations like this:

my_solve = newton_raphson(0.5, 0.001, root=my_func, erfc=erfc8)

To increase precision (at the expense of calculation time), you could use erfc16:

my_solve = newton_raphson(0.5, 0.001, root=my_func, deriv=my_deriv, erfc=erfc16)

These ast-modification semantics therefore allow you to use any pure python numerical code which can be JIT-
compiled, regardless of whether the original author allowed arbitrary functions to be passed in.

1.6.2 Why are we re-writing functions that already exist in numpy/scipy/etc?

One of the major advantages of numba is that the JIT compilation will be optimized for the specific hardware you
are running on. The traditional Python system of writing a C or Cython routine and then pre-compiling it will not be
optimised for specific hardware.

Over the last few years, the SIMD registers in CPUs have grown to 512-bits, which numba/fastats code will be able to
take advantage of. Older builds of numpy/scipy will not.

This library therefore attempts to move as much logic into small reusable python functions which can be compiled as
required using numba. We do not use pre-compiled code.

This system also allows us to have lower or higher precision variants of functions if we want to control the runtime
and/or accuracy. With compiled code this adds a huge overhead to the codebase.

8 Chapter 1. Single Page Docs

http://numba.pydata.org/
http://numba.pydata.org/

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

9

	Single Page Docs
	Introduction
	Core Functionality
	fastats.linear_algebra
	fastats.maths
	fastats.optimise
	Technical Details

	Indices and tables

