

Fastats

Contents:

	Single Page Docs
	Introduction

	Core Functionality

	fastats.linear_algebra

	fastats.maths

	fastats.optimise

	Technical Details

Indices and tables

	Index

	Module Index

	Search Page

Single Page Docs

Everything you need on one page :)

Introduction

Fastats is a numerical library for python designed to give the highest level of performance in terms of
both development time and execution time.

It does this by providing a high-level, easy-to-use python API which is
specifically designed to be JIT-compiled using the excellent numba [http://numba.pydata.org/] library to
run at native speed.

Here’s a quick example to show some basic concepts:

import numpy as np

from fastats import single_pass

data = np.random.random((1000000,))

def square_minus_one(x):
 return x * x - 1.0

result = single_pass(data, value=square_minus_one)

fastats.core.single_pass() is a core fastats function which takes a numpy array and a function,
and applies the function to each row of the numpy array. The function must be passed as the keyword
argument value.

The value function can be any user-defined or library python function which is able to
be JIT-compiled in nopython mode by numba [http://numba.pydata.org/].

Note

Technical note: Internally, fastats takes the value function and replaces all occurrences of that function recursively using the AST, then JIT-compiles the resulting function using numba [http://numba.pydata.org/] so that everything runs at native speed. This ability to pass a function as an argument to a numba [http://numba.pydata.org/] function is one of the key tenets of the fastats library. This is achieved using the @fs decorator from the fastats library, which will be described later.

This is conceptually similar to the pandas.apply or numpy ufunc system for vectorizing
calculations across arrays - the benefits of fastats are (1) performance and (2) no required
knowledge of decorators, C/Cython or ufuncs.

Fastats provides:

	A mechanism for passing arbitrary functions to numba [http://numba.pydata.org/] functions, and having them JIT correctly.

	An AST transform which can cleanly replace functions within a nested python hierarchy.

	A core library of iteration functions to allow users to avoid explicit indexing in most cases. This is not only safer but also usually faster to develop and faster to execute.

	A core library of high-performance linear algebra functions which are generally much faster than existing implementations.

The AST transform in combination with the linear algebra routines allow us to perform many standard data science/time series
analysis tasks much faster than with existing packages. The idea of using numba [http://numba.pydata.org/] as a JIT compiler is not just for immediate
performance benefits, but also so that these routines are always compiled for the hardware they are running on - this
is one of the main reasons that fastats can be faster than existing pre-compiled libraries.

With fastats, functions can be wrapped with the @fs decorator which transforms
the function to allow any keyword arguments to be passed; these keyword arguments
specify the functions to be replaced within the original code.

When you specify a keyword argument, the code is transformed into AST form,
and is then re-built with the specified functions replaced. This leads to
extremely fast execution times (due to numba [http://numba.pydata.org/]), and extremely fast development
times (due to AST replacement of functions).

Performance Comparison

Here we use the data from the introductory code block above - a numpy array of 1 million float64’s. The test machine is
a 2015 Macbook Pro, Intel Core i7, 16GB RAM:

	System

	Code

	Result

	Pandas .apply

	
import pandas as pd

s = pd.Series(data)

%timeit s.apply(square_minus_one)

	391 ms ± 11.9 ms per loop

	Numpy funcs

	
import numpy as np

%timeit np.power(data, 2) - 1

	30.8 ms ± 944 µs per loop

	Pandas binops

	
import pandas as pd

s = pd.Series(data)

%timeit (s * s) - 1

	4.3 ms ± 93.8 µs per loop

	Numpy binops

	
import numpy as np

%timeit (data ** 2) - 1

	1.65 ms ± 19.7 µs per loop

	Numba direct

	
from numba import jit

jit_wrap = jit(

nopython=True,

parallel=True

)(square_minus_one)

%timeit jit_wrap(data)

	1.6 ms ± 22.2 µs per loop

	Fastats

	
from fastats import single_pass

my_func = single_pass(

data, value=square_minus_one,

return_callable=True)

%timeit my_func(data)

	1.48 ms ± 22.4 µs per loop

As you can see, without resorting to C/Cython or other native code, fastats allows you to apply arbitrary Python
functions at native speeds.

Core Functionality

This section details the main functionality available in the fastats library.

single_pass

We have already used the single_pass function in the introductory example above. In a simplistic sense, this is
equivalent to the following Python code:

def single_pass(x, value=None):
 result = np.zeros_like(x)
 for row in x:
 result[i] = value(row)
 return result

As you can see, it allocates a new array the same size and type of the input array, then iterates over the input array
row-by-row, and assigns the return value to the corresponding row in the newly allocated output array.

Note

The actual implementation is slightly more nuanced than this because it will recursively replace all calls to the value function (or any other keywords specified) throughout the entire subtree.

Note

This single_pass implementation is slightly naive in that it doesn’t currently account for multiple input parameters to the value function. This is something we are actively working on.

To use single_pass you always pass it a numpy array and at least one keyword argument value= with the function you
would like to apply:

def my_calc(x):
 return x**3 - x - 1

result = single_pass(data, value=my_calc)

In the my_calc example above, the function object is shown passed as the value= keyword argument. This function
will be replaced within the existing single_pass definition and automatically JIT-compiled using numba [http://numba.pydata.org/]. The
resulting iteration will then occur at native speeds, not bottlenecked by python bytecode interpretation.

Note

The fastats ethos of allowing extremely fast development as well as execution time implies that we need to help stop developers/data scientists writing their own iteration code. It’s far safer to use a pre-built and well-tested function for iteration, especially where explicit indexing is used. single_pass facilitates this as it requires no knowledge of any indexing issues, and is also faster than most/all other methods - it is therefore the recommended way to apply any operation to an array.

windowed_pass

Another common operation is to apply a function as a rolling window along a data set; for this we have windowed_pass.
Here’s a slightly contrived example showing how to calculate the rolling mean across an array:

from fastats import windowed_pass

def mean(x):
 return np.sum(x) / x.size

result = windowed_pass(x, 10, value=mean)

In the code above, the obvious difference between single_pass and windowed_pass is that the windowed version takes
a second positional argument to specify the size of the window. A window of that size is then fed into the value= function,
so the function also needs to accept an array, not a scalar value.

To change the window from 10 items to 25 items, we would therefore change line 6 above to:

result = windowed_pass(x, 10, value=mean)

For a more real-world example, let’s take a look at a rolling least-squares regression (OLS) across an array. The OLS
code will be discussed in the linear_algebra section later, but for now let’s look at how to perform a high-performance
rolling OLS over a numpy array with 2 columns:

from fastats import windowed_pass
from fastats.linear_algebra import ols

def ols_wrap(x):
 return ols(x[:,:1], x[:,1:])[0][0]

result = windowed_pass(x, 10, value=ols_wrap)

The ols_wrap function is due to a current limitation of fastats - you cannot currently pass a function requiring
more than one argument to windowed_pass; the workaround is to write a one-line wrap function which passes each column
of the data set correctly to the underlying function, as shown above. This limitation will be removed in a future version.

Note

Similar to the single_pass function, this windowed_pass example will take the high-performance ols implementation from the fastats standard library, and JIT compile both the OLS and the loop which performs the iteration. In this way the user gets high performance without needing to know the underlying details of performance coding.

This is a quick way to get a rolling OLS function, however usually we are not interested in the slope values - most people
will be more interested in the r^2 and t-statistic values. To do this we will need to return multiple values from the
wrap function:

from fastats import windowed_pass
from fastats.linear_algebra import ols, r_squared

def ols_r_squared(x):
 out = np.zeros(2)
 a = x[:, :1]
 b = x[:, 1:]
 slope = ols(a, b)[0][0]
 r2 = r_squared(a, b)[0][0]
 out[0] = slope
 out[1] = r2
 return out

result = windowed_pass(data, 10, value=ols_r_squared)

Note

This wrap function for multiple return values is a bit fiddly to set up, but we are actively working on making this easier.

This works because the return value from the windowed_pass function is always the same shape as the input data. As a result
with the raw input data in two columns, we can support two return values from the inner jitted function. This is however quite
restrictive, and we will improve this in a future release.

windowed_stateful_pass

Early JIT compilation without execution - return_callable

Most users will find it useful to store the jitted function, rather than re-jitting the code every time it is called. To
do this, pass the keyword argument return_callable=True to any core function (a core function is one with an @fs decorator) and
it will return the function instead of executing it.

For example:

rolling_ols = windowed_pass(x, 10, value=ols_wrap, return_callable=True)

After this, you can call the rolling_ols function without incurring another AST transform and JIT compilation cycle.
The result is just a normal Python function, so you call it with its expected arguments:

result = rolling_ols(x, 10)
large_window_result = rolling_ols(x, 250)

The @fs decorator

The ability to pass functions as arguments to numba functions and have everything jitted correctly comes from the @fs
decorator. When this decorator is applied to a function, it changes the semantics of keyword arguments;
keyword arguments indicate that any function calls of that argument name should be replaced with the function
being passed in. For example:

def mean(x):
 return np.sum(x) / x.size

result = single_pass(x, value=mean)

The definition of single_pass does not take any keyword arguments, or specify **kwargs, but it has an @fs
decorator and therefore substitutes all occurences of value for mean in its own function body, and in the function
bodies of any of its child functions.

fastats.linear_algebra

fastats.maths

fastats.optimise

Technical Details

How do the AST Transforms work?

Imagine a nested function such as a very simple Newton-Raphson solver:

def newton_raphson(x0, delta, root=fs_func, deriv=deriv):
 last_x = x0
 next_x = last_x + 10 * delta
 while abs(last_x - next_x) > delta:
 new_y = root(next_x)
 last_x = next_x
 next_x = last_x - new_y / deriv(last_x, delta)
 return next_x

In the code above we actually want to replace the root function with one of our own
choosing, without having to re-write the entire newton_raphson wrapper function.

In fastats this is performed by changing the semantics of positional and keyword
arguments; numba does not allow us to pass functions as arguments, but even if it
did, we still need the ability to arbitrarily modify deeply nested functions (use
cases discussed below), rather than just the calls in the top-level function.

The Newton-Raphson code shown above is in the fastats standard library, and allows us
to do the following:

from fastats.optimise.root_finding.newton_raphson import newton_raphson

def my_func(x):
 return x ** 3 - x - 1

result = newton_raphson(0.5, 0.001, root=my_func)
assert 1.324 < result < 1.325

my_func is the function for which we would like to find the roots. It takes one argument x,
which will be varied to find the root.

When newton_raphson is called, it takes the root=my_func kwarg, and inspects the signature
of my_func. It finds that my_func takes 1 argument and expects the first argument
(x in this case) to be the parameter that is modified by the algorithm to find the root.

This is what fastats performs: at any level in the AST, fastats will modify
the function signatures and ensure that the correct arguments are passed to all functions,
in order to allow any function to be modified by passing it as a keyword argument at the
top-level.

fastats does not currently support multiple arguments to solver functions, but we will support this in
a future release.

In this example, deriv will numerically calculate the derivative at each point, which is the
reason for requiring nested function substitution from the AST transform. It is also possible to use
the same deriv function for a wide range of root functions, as the numerical derivative just
calls the root function with the x-values bumped in either direction. As a result, we need the
root= keyword argument to replace all values in the child functions (including deriv), not
just the one at the top-level. This allows us to have a very efficient and easy-to-learn API
without sacrificing performance.

However, in this case we can trivially calculate the analytical derivative by hand, and replace the deriv function
like this:

def my_deriv(x, y):
 return 2 * x ** 2 - 1

result = newton_raphson(0.5, 0.001, root=my_func, deriv=my_deriv)

Which allows us to optionally pass an optimised function to calculate the derivative, but fall back
on an unoptimised version for fast experimenting/research.

This is not-limited to specific functions - if you are happy with lower-precision in certain
calculations, you can pass faster (lower-precision) versions of any mathematical functions,
and fastats will replace them throughout the entire AST before passing the code onto numba, without
requiring you to modify any code.

As an example, some calculations require the complementary error function erfc to be calculated.
The accuracy (precision) of erfc depends partially on how many terms are in the expansion. By
reducing the number of terms we can speed up calculations at the expense of accuracy.

If you are happy with 8 decimal places, and you had a a custom function erfc8 to calculate this
in an optimal manner, you could speed up calculations like this:

my_solve = newton_raphson(0.5, 0.001, root=my_func, erfc=erfc8)

To increase precision (at the expense of calculation time), you could use erfc16:

my_solve = newton_raphson(0.5, 0.001, root=my_func, deriv=my_deriv, erfc=erfc16)

These ast-modification semantics therefore allow you to use any pure python numerical
code which can be JIT-compiled, regardless of whether the original author allowed arbitrary
functions to be passed in.

Why are we re-writing functions that already exist in numpy/scipy/etc?

One of the major advantages of numba [http://numba.pydata.org/] is that the JIT compilation will be
optimized for the specific hardware you are running on. The traditional
Python system of writing a C or Cython routine and then pre-compiling it
will not be optimised for specific hardware.

Over the last few years, the SIMD registers in CPUs have grown to 512-bits,
which numba/fastats code will be able to take advantage of. Older builds of
numpy/scipy will not.

This library therefore attempts to move as much logic into small reusable
python functions which can be compiled as required using numba [http://numba.pydata.org/]. We do not
use pre-compiled code.

This system also allows us to have lower or higher precision variants of
functions if we want to control the runtime and/or accuracy. With compiled
code this adds a huge overhead to the codebase.

Index

 nav.xhtml

 Table of Contents

 		
 Fastats

 		
 Single Page Docs

 		
 Introduction

 		
 Performance Comparison

 		
 Core Functionality

 		
 single_pass

 		
 windowed_pass

 		
 windowed_stateful_pass

 		
 Early JIT compilation without execution - return_callable

 		
 The @fs decorator

 		
 fastats.linear_algebra

 		
 fastats.maths

 		
 fastats.optimise

 		
 Technical Details

 		
 How do the AST Transforms work?

 		
 Why are we re-writing functions that already exist in numpy/scipy/etc?

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

